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Abstract 

Objectives: Vocalization as part of vigilance behaviour is widespread across animal taxa, including ruminants. Calls 
of wild-living giraffes have never been recorded and spectrographically investigated. This study reports the acoustic 
structure of vigilance-related hiss and snort calls of wild-living giraffes Giraffa camelopardalis.

Results: The hiss and snort calls were emitted during five recording sessions produced by nine individual giraffes (8 
adults and 1 subadult) in their natural environment in Namibia (3 individuals) and Kenya (6 individuals). These calls 
attended vigilance behaviour toward humans in hides or in vehicles and cheetahs as natural predators of giraffe 
young. This study provides spectrographic analyses of 22 hiss and 20 snort calls. The giraffe hisses were broadband 
vocalizations of an average duration of 0.72 s (from 0.24 to 1.04 s) and a peak frequency of 0.69 kHz. The giraffe snorts 
were broadband pulsed calls of an average duration of 0.28 s (from 0.13 to 0.55 s), a peak frequency at 0.20 kHz and 
comprised a prominent low-frequency pulsation of 23.7 pulses/s. The acoustic structure of giraffe hisses is reminiscent 
of vigilance-related hisses of musk deer Moschus moschiferus. Giraffe snorts differ from snorts of other ruminants by 
their prominent pulsed pattern.
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Introduction
Vocalizations attend vigilance behaviour in many animal 
taxa [1]. The acoustic structure of these vocalizations 
may encode behavioural context and type of predator [2–
5] as well as the degree of negative emotional arousal of 
the caller [6, 7] and thus the threat urgency [8–10]. These 
acoustic cues to the degree of urgency and arousal can 
be used for avoiding danger by conspecifics [8, 11, 12] or 
heterospecifics [13, 14].

In mammals, vigilance-related vocalizations are best 
studied for group-living rodents [15, 16], primates [5, 
17] and carnivores [18–20], and have been reported for 
fourteen species of ruminants [21–42], including giraffe 
Giraffa camelopardalis [38–42]. Among reported audible 

[38–40] and infrasonic (14  Hz) vocalizations [41, 42], 
only presence of audible call types (snort, burst, grunt 
and humm) was confirmed by recent studies of captive 
giraffes [43, 44].

Giraffe hisses were verbally reported as nasal calls emit-
ted in the context of approach investigation [38]. Giraffe 
snorts were verbally reported as short plosive grunts, 
being produced through the widened nostrils while the 
animal was standing and scanning one particular spot or 
direction as a reaction to a potentially threatening irrita-
tion [45–47] or immediately after a dominant giraffe bull 
had chased off an inferior bull [47]. Giraffe snorts were 
reported as an illustrative spectrogram and a wave-file 
based on recordings made in captivity using automate 
recording systems [43]; acoustic analyses of these calls 
were not provided. Calls of wild-living giraffes have never 
been recorded previously. The purpose of this study was 
to present the acoustic structure of the hiss and snort 
calls of wild-living giraffes.
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Main text
Methods
Giraffe calls were collected in two natural localities: in 
February 2016 at the 15,000-hectare Okambara Ranch 
located 130  km east of Windhoek (Namibia) and in 
March and November–December 2016 in Maasai-Mara 
National Reserve and the adjacent area Mara Conserv-
ancy area (Kenya). During five recording sessions (2 in 
Namibia and 3 in Kenya, all conducted on different days), 
calls of 9 giraffes were recorded (3 individuals G.c. giraffa 
in Namibia and 6 individuals G.c. tippelskirchi in Kenya 
[48]), including 2 adult males, 2 adult females, 4 adults of 
unspecified sex and 1 subadult male.

For acoustic recordings (48 kHz, 16 bit, frequency range 
20–20,000  Hz) we used Marantz PMD-660 or PMD-
661 solid state recorders (D&M Professional, Kanagawa, 
Japan) with Sennheiser K6-ME66 or ME67 microphones 
(Sennheiser electronic, Wedemark, Germany). During 
recording, each call was labeled by the researcher’s voice 
to identify the target vocalizations against background 
noises, the behavioural context and (where possible), the 
individual identity, sex and age of a caller. All calls were 
produced spontaneously by the giraffes; researchers did 
not provoke the animals to vocalize.

At the Namibia locality calls were recorded from hides 
during daytime and at twilight. One hide was a potential 
feeding tree of giraffes with overhanging branches that 
covered the researcher thus preventing his visual detec-
tion by the giraffes. Another hide consisted of a row of 
dense bushes, approached by giraffes at twilight in the 
evening when moving to a nearby water place for drink-
ing. The researcher sitting in this hide was partly visible 
to the giraffes at a distance of approximately 20 m.

In the Kenya locality, where leaving vehicles is pro-
hibited, calls were recorded from a standing car during 

daytime at distance of 10–100  m to the giraffes. Two 
recordings were done when cheetahs Acinonyx jubatus, 
occasional predators of giraffe young [49, 50], were at 
30–100 m to the target giraffes. The third recording was 
done on giraffe vigilance behaviour toward a standing car, 
in the absence of predators.

Calls of good quality were selected for acoustic analy-
ses (24  kHz sampling frequency, Hamming window, 
FFT 1024 points, frame 50%, overlap 93.75%) using Avi-
soft SASLab Pro software (Avisoft Bioacoustics, Berlin, 
Germany). Based on the acoustic structure (Fig.  1) and 
the sounding (Additional file  1: Audio S1), we classified 
the calls into hiss and snort call types. For each call, we 
measured call duration from the screen with the stand-
ard marker cursor in the spectrogram window. After 
high-pass filtration (100  Hz, Gauss filter) we measured 
the maximum amplitude frequency (fpeak) and three 
quartiles (q25, q50 and q75), covering 25, 50 and 75% 
of call energy from the mean power spectrum of each 
call. For the snorts (all of them displayed low-frequency 
pulsation), we measured the pulse rate with the stand-
ard marker cursor. All measurements were exported 
to Microsoft Excel (Microsoft Corp., Redmond, WA, 
USA) for analyses. In total, we measured 22 hiss calls 
(21 from Namibia and one from Kenya) and 20 snort 
calls (1 from Namibia and 19 from Kenya), from 1 to 11 
(mean ± SD = 4.7 ± 3.9) calls per individual.

Statistical analyses were made with STATISTICA, 
v. 8.0 (StatSoft, Tulsa, OK, USA); all means are given 
as mean ±  SD, and differences were considered signifi-
cant whenever p  <  0.05. Nine of ten distributions did 
not depart from normality (Kolmogorov–Smirnov test, 
p  >  0.05), so, we could use Student t test with Bonfer-
roni correction for multiple comparisons to compare the 
parameter values between the hiss and snort calls.

Fig. 1 Two vigilance-related call types in the giraffe Giraffa camelopardalis. The spectrogram (below) and waveform (above) illustrate (A1) hiss of 
an adult giraffe of unspecified sex in Namibia; A2 hiss of a subadult male giraffe in Kenya; B1 snort of an adult giraffe of unspecified sex in Namibia; 
B2 snort of an adult female in Kenya. In the waveform of the snorts, the low-frequency pulsation is visible as amplitude peaks. The spectrogram was 
created with 24 kHz sampling frequency, Hamming window, FFT 1024 points, frame 50% and overlap 93.75%. Original wav-files are available in the 
electronic supporting information (Additional file 1: Audio S1)
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Results
Giraffe hisses were broadband vocalizations of duration 
0.24–1.04  s and the peak frequency at 0.69 ±  0.61  kHz 
(Fig. 1, Table 1, Additional file 2: Table S1). Giraffe snorts 
were broadband vocalizations of duration 0.13–0.55  s 
and the peak frequency at 0.20 ± 0.29 kHz, displaying a 
prominent low-frequency pulsation ranging in rate from 
18.3 to 32.8 pulses/s between calls (Fig. 1, Table 1). Com-
pared to hisses, snorts were shorter, their peak frequency 
was lower, and the lower, medium and upper power quar-
tiles were all higher (Table 1).

We observed that snorts were produced nasally by a 
sudden burst of air released from the nostrils. However, 
we could not establish whether the hisses were produced 
through the nose or via the opened mouth. Emission of 
hisses toward a hidden researcher was sometimes pre-
ceded by neck-shaking. Emissions of snorts were not 
preceded or accompanied by any prominent movements; 
only one adult female nodded during the emission of 
snorts. Hisses and snorts were either produced singly or 
in series lasting more than half an hour. Hisses and snorts 
could occur in the same call series. Calls within series 
were separated by time intervals of up to a few minutes.

Most hisses (20 of 22) were produced toward a 
researcher, hidden under the overhanging tree branches. 
At the day of the recording, this hide was approached 
by a group of 7 giraffes for feeding. The giraffes came 
so close that their heads and parts of their bodies were 
3–5  m above the researcher. Only then the animals 
detected the researcher and started the emission of 
hisses. The researcher could see the giraffe heads through 
the branches against the bright sky, whereas the giraffes, 
despite their acute vision [51], could hardly see the 
researcher when looking from bright sunlight towards 
the dense foliage. Probably, the hissing was triggered by 
the sudden detection of human smell just underneath 
their food source, as the olfactory abilities of giraffes are 
good [52]. Despite hampered vision of the researcher at 
least two callers could be identified because calls arrived 
from different sides at the researcher. After some time, 
five giraffes went off, whereas two animals stayed at a 
distance of 8 m and one of them continued hissing. The 

caller passed a few steps from one side to the other in 
front of the hiding tree and then hissed. Before hissing, 
the caller often displayed neck-shaking.

Most giraffe snorts (19 of 20) were recorded, when 
the callers were in 30–100  m of female cheetahs with 
cubs. Cheetahs were active, either eating a kill or mov-
ing along groups of giraffes but did not pay evident 
attention to the giraffes. During one recording, an adult 
giraffe from a group of three animals spotted a group of 
three cheetahs (a mother with two cubs) eating a kill and 
started approaching them slowly. The giraffe produced 
three snorts, the first snort at a distance of 50–60 m, the 
second at 45–50  m and the third at more than 100  m, 
while retreating from the cheetahs. Intervals between 
the snorts were about 1 min. During another recording, 
a single subadult male produced a long series of snorts 
and one hiss after an adult cheetah female had passed by 
and the giraffe ran off for a few meters and then stopped, 
looking at her.

Discussion
This study is the first describing the acoustic variables of 
calls of wild-living giraffes. Both the hiss and snort call 
types were rather soft and probably communicated vigi-
lance at short range, as short-range ultrasonic alarm calls 
of ground squirrels [53, 54]. Whereas most hisses were 
recorded in Namibia and most snorts in Kenya, this dis-
crepancy was probably related to the situation of higher 
potential danger and less predictability for giraffe callers 
in Namibia (where giraffes are legally hunted from the 
hides) than in Kenya (where the hunting is prohibited) 
and not to locality per se. Otherwise, the single hiss that 
was recorded in Kenya, was produced by a subadult male 
toward the cheetahs, that predate young giraffes [49, 50]. 
Thus, hisses prevailed in the contexts of higher tense-
ness/unexpectedness for a caller whereas the snorts pre-
vailed in the contexts of less unexpectedness for a caller. 
Two different call types in response to different levels of 
threat are known for many species of mammals and birds 
[55].

We took one single captive giraffe snort from the sup-
plementary material of the study of Baotic et  al. [43] 

Table 1 Values (mean ± SD) of acoustic variables measured for hiss and snort call types of giraffe and Student t test 
results of their comparison

Designations: duration—call duration; fpeak—peak frequency; q25, q50 q75—lower, medium and upper quartiles. p estimates less than 0.01 (after Bonferroni 
correction) are shown in bolditalics

Call types Duration (s) fpeak (kHz) q25 (kHz) q50 (kHz) q75 (kHz) Pulse rate (Hz)

Hiss (n = 22) 0.72 ± 0.22 0.69 ± 0.61 0.71 ± 0.24 1.55 ± 0.37 2.94 ± 0.60 Non-pulsed

Snort (n = 20) 0.28 ± 0.10 0.20 ± 0.29 1.05 ± 0.47 2.23 ± 0.90 4.39 ± 1.64 23.7 ± 4.2

Student t test results t = 8.34;
p < 0.001

t = 3.11;
p = 0.003

t = 3.03;
p = 0.004

t = 3.21;
p = 0.003

t = 3.84;
p < 0.001

Not applicable
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Fig. 2 Vigilance-related calls across Ruminantia. A Hiss and B snort of a giraffe; C hiss of a musk deer Moschus moschiferus; D snort of a female 
goitred gazelle Gazella subgutturosa; E snort of a waterbuck Kobus ellipsiprymnus; F snort of a male impala Aepyceros melampus; G snort of a male 
Western tur Capra caucasica cylindricornis; H two snorts of a male klipspringer Oreotragus oreotragus; I two snorts of a male springbok Antidorcas 
marsupialis; J bark of a female greater kudu Tragelaphus strepsiceros; K bark of a white-tailed gnu Connochaetes gnou; L bark of a male Indian munt-
jac Muntiacus vaginalis; M bark of a female sambar deer Rusa unicolor; N bark of a female sika deer Cervus nippon; O bark of a female Siberian red 
deer Cervus elaphus sibiricus; P bark of a female Bactrian red deer Cervus elaphus bactrianus. The illustrative spectrograms are based on calls recorded 
from adult wild-living animals (except the Western tur, recorded in captivity) that vocalized at the sudden appearance of a human. During their 
vocalizations, the callers did not flee but either froze or slowly passed by the human. Spectrograms were created with 24 kHz sampling frequency, 
Hamming window, Fast Fourier Transform (FFT) 1024 points, frame 50% and overlap 93.75%. Original wav-files are available in the electronic sup-
porting information (Additional file 3: Audio S2)
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and measured its acoustic characteristics. The acous-
tics of this snort (duration =  0.21  s; fpeak =  0.09  kHz; 
q25 = 1.05 kHz; q50 = 1.68 kHz; q75 = 3.09 kHz; pulse 
rate = 26.5 Hz) were similar to those of the snorts meas-
ured in the current study (Table 1).

Giraffe nasal hisses and snorts can be compared by 
their acoustic structure with vigilance-related nasal 
hisses and snorts of other ruminants (Fig.  2, Additional 
file  4: Table S2). Giraffe hisses were the longest calls 
among ruminants, either nasal or oral (Additional file 4: 
Table S2). Probably this was the effect of the non-explo-
sive air expulsion during the hisses and/or the effect of 
large body size (lung volumes) of the giraffe [56]. Simi-
larly non-explosive air expulsion occurs only during the 
hisses of the much smaller-sized musk deer Moschus 
moschiferus (Fig.  2). Giraffe snorts had the lowest peak 
frequency among the snorts of other ruminants (Addi-
tional file  4: Table S2). This might also result from the 
giraffe’s large body size [56] and its respectively large 
vocal tract or larynx [57, 58].

Giraffes share the nasal vocal emission with goitred 
gazelle Gazella subgutturosa [35], impala Aepyceros mel-
ampus, Western tur Capra caucasica cylindricornis, klip-
springer Oreotragus oreotragus and springbok Antidorcas 
marsupialis (Additional file 4: Table S2). These nasal calls 
are probably produced aerodynamically by vortices at the 
glottis or vocal tract narrowings [59–62], distinctive to 
oral calls (barks) of, e.g. white-tailed gnu Connochaetes 
gnou, sambar deer Rusa unicolor and sika deer Cervus 
nippon (Fig.  2, Additional file  4: Table S2) displaying 
fundamental frequency produced evidently by the vocal 
folds [63, 64]. In the springbok and klipspringer, superim-
posed fundamental frequency and aerodynamic whistle 
(Fig. 2, see also [36]) suggest biphonation, described for 
some cervids [24, 62, 65]. In the giraffe, the fundamental 
frequency was only reported for the humm vocalization 
[43], described based on automated recordings in the 
absence of researchers, so nasal or oral vocal emission 
and context of this vocalization could not be determined.

Limitations
This pilot study had a few limitations:

  • The study was conducted in one locality in Namibia 
and one in Kenya, what limits expansion of results 
for entire local populations of giraffes.

  • Context of vocalizing could not be predicted and 
standardized, as giraffes vocalize very rarely. Two 
months of stay in Namibia (three researchers, 4–8 h 
of observations/day) and 1 year of stay in Kenya (one 
researcher, 8  h of observations/day) provided only 
five recording sessions.

  • Only 5 of the 9 callers were sexed as vision was com-
plicated by the foliage or twilight during observations 
in Namibia.
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Supplementary Table 

Call type, nasal/oral vocal emission and acoustic characteristics of vigilance-related vocalizations across Ruminantia 

Species name Latin name Call type Nasal/oral 
production 

duration (s) fpeak (kHz) f0max (kHz) Illustration 

giraffe Giraffa 
camelopardalis

hiss [*] nasal [38] 0.72 [*] 0.69 [*]  Fig 1A, 2A 

giraffe Giraffa 
camelopardalis

snort [*] nasal [**] 0.28 [*] 0.20 [*]  Fig 1B, 2B

musk deer Moschus 
moschiferus

hiss [31,**] not indicated 0.25 [31] 3.0 – 5.0 [31]  Fig 2C 

goitred gazelle Gazella 
subgutturosa

snort [35] nasal [35] 0.18 [35]     

       

       

       

      

      

        

        

      

3.06 [35] Fig 2D

waterbuck Kobus 
ellipsiprymnus

snort [**] not indicated Fig 2E

impala Aepyceros 
melampus

snort [**] nasal [**] Fig 2F

Western tur Capra 
caucasica 
cylindricornis

snort [**] nasal [**] Fig 2G

klipspringer Oreotragus 
oreotragus

snort [36,**] nasal [**] Fig 2H

springbok Antidorcas 
marsupialis

snort [**] nasal [**] Fig 2I

topi Damaliscus 
lunatus 

snort [34] not indicated 0.22 [34] 2.03 [34]   

greater kudu Tragelaphus 
strepsiceros

bark [**] oral [**] Fig 2J

white-tailed gnu Connochaetes 
gnou

bark [**] oral [**] Fig 2K

four-horned 
antelope 

Tetracerus 
quadricornis 

bark [37] not indicated



Indian muntjac Muntiacus 
vaginalis

bark [28,29] oral [29] 0.24 [28]; 0.26 
[29] 

0.89 [28] 0.59 [29]; 0.66 
[28] 

Fig 2L 

Chinese muntjac Muntiacus 
reevesi 

bark [30] not indicated 0.27 – 0.51 [30] 0.67 – 1.12 [30]   

sambar deer Rusa unicolor bark [28] oral [28] 0.15 [28]    

     

        

   

1.61 [28] 0.98 [28] Fig 2M
sika deer Cervus nippon bark [23,25] oral [25] 0.12 [25]; 0.17 

[23] 
 2.60 [23]; 2.67 

[25] 
Fig 2N 

Siberian red 
deer

Cervus elaphus 
sibiricus

bark [**] oral [**] 0.20 [24] 0.93 [24] Fig 2O

Bactrian red 
deer

Cervus elaphus 
bactrianus

bark [**] oral [**] Fig 2P

Scottish red deer Cervus elaphus 
scoticus

bark [23] not indicated 0.22 [23]  0.15 [23]  

Canadian wapiti Cervus 
canadensis

bark [21,22] oral [21] 0.25 [21]    

European roe 
deer 

Capreolus 
capreolus 

bark [32,33] not indicated  1.4-1.7 [32]   

Siberian roe 
deer 

Capreolus 
pygargus 

bark [32] not indicated  1.0-1.4 [32]   

white-tailed deer Odocoileus 
virginianus 

snort [26,27] oral [26]; nasal 
[27] 

0.14 [26]; 0.25 
[27] 

* this study. 

** unpublished observations of the authors. 
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